Low Dose Computed Tomography (LDCT) has offered tremendous benefits in radiation restricted applications, but the quantum noise as resulted by the insufficient number of photons could potentially harm the diagnostic performance. Current image-based denoising methods tend to produce a blur effect on the final reconstructed results especially in high noise levels. In this paper, a deep learning based approach was proposed to mitigate this problem. An adversarially trained network and a sharpness detection network were trained to guide the training process. Experiments on both simulated and real dataset shows that the results of the proposed method have very small resolution loss and achieves better performance relative to the-state-of-art methods both quantitatively and visually.
Supplementary notes can be added here, including code and math.